HPLC-UV 检测电子电气中多溴联苯醚的含量

杨晓燕¹, 刘玉莲¹, 张伟², 庞秀权², 李小侠² (江苏天瑞仪器股份有限公司, 江苏 苏州 215300)

[摘 要]目的:建立并验证了用 HPLC-UV 测定电子电气产品中多溴联苯醚的检测方法;方法:以甲苯为溶剂,采用索氏萃取法提取电子电 气产品中 10 种多溴联苯醚,以相对保留时间定性,色谱峰面积定量;结果:该方法平均回收率为 92.39 %~100.32 %, RSD 为 0.994 %~1.377 %, 检测限(S/N=3)分别为 1-PBDE: 0.037 mg·L⁻¹; 2-PBDE: 0.035 mg·L⁻¹; 3-PBDE: 0.044mg·L⁻¹; 4-PBDE: 0.047 mg·L⁻¹; 6-PBDE: 0.045 mg·L⁻¹; 5-PBDE: 0.043 mg·L⁻¹; 7-PBDE: 0.036 mg·L⁻¹; 9-PBDE: 0.055 mg·L⁻¹; 8-PBDE: 0.054 mg·L⁻¹; 10-PBDE: 0.067 mg·L⁻¹; 结论: 实验表明该方 法对部分电子电气产品中多溴联苯醚含量的测定符合 RoHS 检测的要求。

[关键词]电子电气;多溴联苯醚;索氏萃取 [中图分类号]O65 [文献标识码]A

[文章编号]1007-1865(2010)12-0132-03

HPLC-UV Determination of PBDEs' Contents which in Electronic Products

Yang Xiaoyan¹, Liu Yulian¹, Zhang Wei², Pang Xiuquan², Li Xiaoxia² (Jiangsu Skyray Instrument Co., Ltd., Suzhou 215300, China)

Abstract: Objective: established and tested the PBDEs which in electronic products using HPLC-UV. Methods: used toluene as solvent, adopting Soxhlet extracted the ten kinds of PBEDs from the electronic products, qualitatived with relatively retention time and quantitatived with peak area; Results: The average recovery rate was 92.39 %~100.32 %, RSD was 0.994 %~1.377 %, and the detection limit (S/N=3) respectively 1-PBDE: 0.037 mg·L⁻¹; 2-PBDE: 0.035 mg·L⁻¹; $3-PBDE: 0.044 \text{ mg} \cdot L^{-1}; 4-PBDE: 0.047 \text{ mg} \cdot L^{-1}; 6-PBDE: 0.045 \text{ mg} \cdot L^{-1}; 5-PBDE: 0.043 \text{ mg} \cdot L^{-1}; 7-PBDE: 0.036 \text{ mg} \cdot L^{-1}; 9-PBDE: 0.055 \text{ mg} \cdot L^{-1}; 8-PBDE: 0.054 \text{ mg} \cdot L^{-1}; 1-PBDE: 0.045 \text{ mg} \cdot L^{-1}$ L-1; 10-PBDE: 0.067 mg·L-1; Conclusion: the experiment showed that the method can meet the testing needs of the work which the RoHS carry out testing of PBDEs in many electronic products.

Keywords: electronic; PBDEs; soxhlet extraction

欧盟议会和理事会于 2003 年 1 月通过了 RoHS 指令,全 称是 The Restriction of the use of certain Hazardous substances in Electrical and Electronic Equipment,即在电子电气设备中限 制使用某些有害物质指令,也称 2002/95/EC 指令,2005 年欧 盟又以 2005/618/EC 决议的形式对 2002/95/EC 进行了补充, 明确了六种有害物质的最大限量值,这六种物质分别为: 铅Pb、镉 Cd、汞 Hg、六价铬 Cr⁶⁺、多溴联苯醚 PBDE、多溴联苯 PBB。世界各国尤其是发达国家,对 RoHS 指令的出台反 响强烈,高度关注;中国是全球制造业大国,也是产品出口大 国,出口总量的 70 %以上涉及到 RoHS 指令,因此中国政府 亦十分重视相关问题,并于2004年出台了《电子信息产品污 染防治管理办法》,内容类似 RoHS 指令,并准备与其同步实 施。作为该指令中的多溴联苯醚类有害物质一 被广泛用于多种消费品中,包括电子产品、纺织品、家具、日 化、玩具等。这些物质的存在,一方面避免产品起燃,确保人 类生活安全,然而另一方面,由于该类物质在生产和回收中多有残留,也已影响到人类的生活健康,这也是该指令颁布的初 有残留,也已影响到人类的生冶健康,这也定该指令顺和的彻衷。针对该指令中多溴联苯醚溴系阻燃剂的测定,国家公认的检测方法有 GC/MS^[1]、GC/FID^[2]、GC/ECD^[3]、HPLC/MS/MS^[4] HPLC/UV^[5-6] 以及红外光谱法^[7]等,然而 GC/MS、HPLC/MS/MS 仪器价格昂贵,对人员的专业素质要求高,对用户来说,普及率不高,尤其是中小型企业相对难度加大,仍 GC/FID、GC/ECD、HPLC/UV 均只对部分多溴联苯醚进行分 离。文章在 HPLC/UV 的基础上进一步优化,提出了一种方法 简便、快速、准确、灵敏度高、适应性好、回收率高,可用于 工厂质量控制和检验机构样品检验的方法。

1 实验部分

1.1 仪器和试剂

LC310 高效液相色谱仪/紫外检测器(江苏天瑞仪器股份有 限公司), 电子天平(赛多利斯科学仪器(北京)有限公司), 超声 波清洗器(张家港市神科超声电子有限公司),紫外分光光度计 (上海精密仪器仪表有限公司),旋转蒸发仪(巩义市英峪予华仪 器厂),粉碎机(武义县屹立工具有限公司),超纯水机(南京易 普易达科学发展有限公司)。

正丙醇、甲醇、二氯甲烷、正己烷、甲苯、乙腈均为色谱

纯(美国 TEDIA); 水为超纯水。

磷酸二氢钾、磷酸氢二钠均为分析纯(无锡展望)。

多溴联苯醚标准品:(单标、混标均为美国 Accustandard,Inc. 提供)。 1.2 分析条件

色谱柱: Ultimate XB-C18 色谱柱: 250×4.6 mm, 5 μm, 月旭材料科技(上海)有限公司。

流动相 A: 缓冲溶液(pH=7): 将 0.15 g 磷酸二氢钾和 0.25 g磷酸氢二钠溶于 1000 mL 水中。

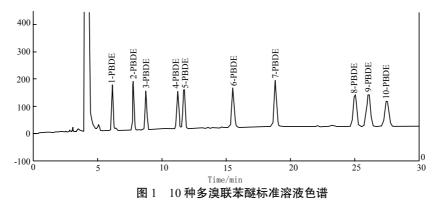
流动相 B: 甲醇。 时间程序见表 1。

表 1 时间程序

Tab.1 Time program

T/min	流动相 A/%	流动相 B/%
0	7	93
17	0	100
30	0	100
31	7	93

流速: 1.0 mL/min; 柱温: 30 ℃; 检测波长: 226 nm; 进样量: 10 μL。 1.3 标准溶液的配置


准确吸取 $10~\mu L$ 标准混合溶液(各物质浓度均为 $50~\mu g \cdot mL^{-1}$),进程,谱图见图 $1 \cdot mL^{-1}$

1.4 样品处理

将电子电气产品中拆分的样品破碎成小于 1×1 cm 的小 块,液氮冷冻后用粉碎机破碎成粒径小于 1 mm 的颗粒。准确 称取 2.0 g 粉碎后的样品颗粒,精确到 0.0001 g,放入用滤纸 叠成的萃取筒中,包好样品,将其放置于事先安装好的索式萃 取装置中,加入1.5倍虹吸管体积的甲苯到接收瓶中,抽提3 h(保持每秒 1 滴到 2 滴的流速); 用旋转蒸发仪将提取液浓缩 至近干(1~2 mL),转移浓缩液于 5 mL 的容量瓶中,用甲苯定 容至刻度,摇匀,用 0.45 μm 的有机滤膜过滤,供测定。

[收稿日期] 2010-09-27

[作者简介] 杨晓燕(1982-),女,重庆人,本科,工程师,主要从事研究液相色谱在多行业中的应用。

Chromatograms of standard solutions for ten kinds of PBDEs

2 结果与讨论 2.1 色谱条件优化选择

考察了不同规格的 C18 反相色谱柱对 PBDEs 分离的影 响: 150 mm 的色谱柱,虽然总体出峰时间短,但不能将十种 多溴联苯醚完全分开, 而选用 250 mm 的色谱柱, 各峰能达到 有效分离(分离度均大于 1.5), 因此选用 250 mm 的 C18 反相 色谱柱;5 µm 和 3 µm 不同粒径的填料对分离没有什么影响, 但同样长度的色谱柱, 3 μm 粒径的填料柱压较高, 价格也较 贵,因此采用 5 µm 粒径的填料。采用乙腈和水、甲醇和水、 甲醇和缓冲盐(将 0.15 g 磷酸二氢钾和 0.25 g 磷酸氢二钠溶于 1000 mL 水中)、甲醇等作为流动相时,用甲醇和缓冲盐(将 0.1509 g 磷酸二氢钾和 0.2477 g 磷酸氢二钠溶于 1000 mL 水中) 溶液进行梯度洗脱效果最好,各种物质之间能很好的分离,基 线比较平稳。考察了不同柱温(25 ℃、30 ℃、35 ℃、40 ℃)

下各峰分离的情况,在 30℃条件下,各峰的分离效果最佳, 故选择30 ℃为柱温。对十种多溴联苯醚的混标进行二极管阵

取方法时,索氏萃取的提取率最高。

提取溶剂考察: 参考相关文献,考察了: 甲苯+正丙醇(体积比 1:1)[9]、甲苯[-3,6,9]、甲苯+甲醇(体积比 10:1)[9]、正丙醇[6]、正己烷+二氯甲烷(体积比 1:1)[10]四种溶剂的提取效率,

最后得出甲苯的提取效率最高,基质干扰最小。 提取时间考察:在用甲苯进行索氏萃取时,考察了萃取时 间为: 1 h、2 h、3 h、4 h、5 h、10 h, 以萃取效率-萃取时间 做曲线,在萃取时间为3h处出现拐点,故选择萃取时间为3h。

表 2 精宓度立硷数据

	衣と 有密度头短製店 Tab.2 Precision of experimental data						
组分	峰面积	平均峰面积	相对标准偏差 /(RSD%)	组分	峰面积	平均峰面积	相对标准偏差 /(RSD%)
一溴联苯醚	302.414	305.036	1.10	五溴联苯醚	394.205	395.001	1.13
	303.500				390.96		
	305.717				389.355		
	304.183				396.107		
	302.927				398.107		
	311.472				401.270		
	339.440				506.584	510.808	1.88
	340.171				504.354		
二溴联苯醚	337.953	338.042	0.93	七溴联苯醚	518.980		
一 保प	339.440	336.042	0.93	1. 保联本颐	524.567		
	331.808				498.789		
	339.441				511.576		
三溴联苯醚	279.136		1.28	九溴联苯醚	486.767	486.320	1.54
	284.570				485.981		
	286.32	284.360			493.190		
	285.30	284.300			489.641		
	281.437				472.001		
	289.394				490.340		
	292.276	293.422	1.27	八溴联苯醚	474.917	479.656	2.49
	290.275				488.284		
四溴联苯醚	292.187				457.885		
	289.789				490.031		
	298.879				481.694		
	297.125				485.123		
六溴联苯醚	306.101		2.06	十溴联苯醚	441.672	444.853	1.09
	306.87				445.150		
	289.811	300.319			438.330		
	298.87	300.319			450.166		
	299.11				443.134		
	301.15				450.664		

2.2 峰位确定

将各单标用甲苯稀释成合适浓度,按本方法确定的色谱条件,取各单标和混标 $10~\mu L_{\circ}$

进样测定,按各保留时间进行定性,出峰顺序为:一溴联苯醚、二溴联苯醚、三溴联苯醚、四溴联苯醚、六溴联苯醚、 五溴联苯醚、七溴联苯醚、九溴联苯醚、八溴联苯醚、十溴联 苯醚。

^{苯醚。} 2.3 阴性和系统适用性试验

不加入样品,加入试剂,按样品处理方法进行测定,在各组分相应保留时间处均没有吸收。取混标 10 μL 进样测定,十个峰相互之间的分离度均大于 1.5,符合相关规定。理论塔

板数按一溴联苯醚的峰计,不得小于6000。

2.4 精密度试验

取稀释的混标 $10~\mu L$ 进样 6~ 针,进行测定,考察各组分峰面积的相对标准偏差,分析结果如表 2~ 所示。 2.5~ 线性关系和检测限

在本方法确定的实验条件下,一溴联苯醚、二溴联苯醚、三溴联苯醚、四溴联苯醚、六溴联苯醚、五溴联苯醚、七溴联苯醚、九溴联苯醚、八溴联苯醚、十溴联苯醚在进样量 5~500 ng 之间线性关系良好。各化合物的相关系数见表 3。在 S/N =3 的条件下,确定各组分的检测限也列入表 3 中。

表 3 线性和检出限数据

组分	线性范围/ng	线性方程	相关系数	检测限/(mg·L ⁻¹)
一溴联苯醚	5~500	y=0.0314x-0.008	0.9999	0.037
二溴联苯醚	5~500	y=0.032x-0.0016	0.9991	0.035
三溴联苯醚	5~500	y=0.0272x-0.0066	0.9997	0.044
四溴联苯醚	5~500	<i>y</i> =0.0029 <i>x</i> -0.0021	0.9999	0.047
六溴联苯醚	5~500	y=0.0313x+0.0052	0.9995	0.045
五溴联苯醚	5~500	y=0.0398x-0.0015	0.9991	0.043
七溴联苯醚	5~500	y=0.0456x+0.0037	0.9995	0.037
九溴联苯醚	5~500	<i>y</i> =0.0443 <i>x</i> -0.0145	0.9994	0.055
八溴联苯醚	5~500	y=0.00475x+0.0085	0.9990	0.054
十溴联苯醚	5~500	<i>y</i> =0.0411 <i>x</i> +0.0077	0.9998	0.067

2.6 回收率试验

采用在实际样品中加入不同添加水平的混标的方式进行 回收率实验,按 1.4 中的方法处理后分析,采用外标法定量, 每个添加水平单独测 3 次,实验结果表明,其平均回收率为 92.39 %~100.32 %, RSD 为 0.994 %~1.377 %。

2.7 实际样品的测试

采用 HPLC 法测试部分电子电气产品,结果如表 4 所示。

表 4 样品检测结果
Tab 4 Sample test results

	Tab.4 Sample test results					
样品名称 组分含量/(mg·kg ⁻¹)	黑插座	白插座	键盘	主机箱	插板	
一溴联苯醚						
二溴联苯醚						
三溴联苯醚						
四溴联苯醚	49.5			25.2	10.9	
六溴联苯醚						
五溴联苯醚						
七溴联苯醚			32.6	45.2	55.1	
九溴联苯醚					39.8	
八溴联苯醚	65.7	41.6		70.1		
十溴联苯醚		63.1	101.5			

3 结论

综上所述,通过对各种电子电气产品进行测试,本方法具有方便快捷、灵敏度高、回收率高、精密度好的特点,且试剂用量少,避免了大量化学试剂的使用,减少了环境污染,用来测定电子电气产品中多溴联苯醚的含量是简单可行的。

参考文献

[1]SN/T 2005.2-2005, 电子电气产品中多溴联苯和多溴联苯醚的测定第 2部分: 气相色谱-质谱法[S].

[2]SN/T 2005.3-2005, 电子电气产品中多溴联苯和多溴联苯醚的测定第 3部分: 气相色谱-氢火焰离子化检测器法[S].

[3]SN/T 2005.4-2005, 电子电气产品中多溴联苯和多溴联苯醚的测定第 4部分: 气相色谱-电子捕获检测器法[S].

[4]SN/T 2005.5-2005, 电子电气产品中多溴联苯和多溴联苯醚的测定第 5部分: 高效液相色谱串联质谱法[S].

[5]SN/T 2005.1-2005, 电子电气产品中多溴联苯和多溴联苯醚的测定第 1 部分: 高效液相色谱法[S].

[6]IEC62321 中文版, 111/24/CD[S].

[7]SN/T 2003.2-2006, 电子电气产品中多溴联苯和多溴联苯醚的测定第二部分: 红外光谱定性筛选法[S].

[8]林竹光,马玉,涂逢樟,等. 气相色谱_负离子化学源_质谱法分析茶叶中5种多溴联苯醚[J]. 材料物理与化学(专业)博士论文,2007,(6):88-92. [9]GB/T 21276-2007, 电子电气产品中限用物质多溴联苯(PBBs)、多溴二苯醚(PBDEs)检测方法 第二法:液相色谱法[S].

[10]江锦花,陈涛. 超声萃取_气相色谱_质谱联用测定海洋沉积物中 39 种多溴联苯醚残留[J]. 分析化学(FENXI HUAXUE)研究报告, 2009, (11): 1627-1632.

(本文文献格式:杨晓燕,刘玉莲,张伟,等. HPLC-UV 检测电子电气中多溴联苯醚的含量[J]. 广东化工,2010,37(12):132-134)